Hour 1

Problem: How many ways can 6 indistinguishable objects be placed into 3 indistinguishable boxes: — Answer: 7 ways: (6,0,0), (5,1,0), (4,2,0), (4,1,1), (3,3,0), (3,2,1), (2,2,2).

Compare to the 28 ways possible if the boxes are distinguishable. (Why 28?)

```
(5,1,0) (1,0,5) (5,0,1) (0,5,1)
                                                                    etc. [Avoid repetition by requiring x_1 \ge x_2 \ge x_3.]
                                                   \rightarrow (5,1,0)
(0,6,0) \rightarrow (6,0,0)
                              (1,5,0) (0,1,5)
(0,0,6)
```

Since these groupings are not of equal size, we can't apply the division rule. Thus we have a new counting problem ...

Def'n.) Let n, k be positive integers. A partition of n into k parts is a k-tuple of positive integers $(n_1, n_2, ..., n_k)$ such that $n_1 \ge n_2 \ge n_3 \ge ... \ge n_k$ and $n_1 + n_2 + ... + n_k = n$.

Partitions of 6 into...

... 1\part: (6)

... 2 parts: (5,1), (4, 2), (3,3)

[etc., up to 6 parts]

(6), (5,1), etc. (Characterize in terms of closure under going up or left.) Young diagrams:

Theorem: The number of partitions of n into exactly k parts is equal to the number of partitions of nwhose largest part is k.

Proof: The former partitions are the ones whose Young diagrams have k rows; the latter, k columns. These are in bijective correspondence (by reflection across the diagonal).

Def'n.) Let par(n,k) be the number of partitions of n into exactly k parts. By definition, Ex: par(6,1) = 1; par(6,2) = 3; par(6,3) = 3; par(6,4) = 2; par(6,5) = 1; par(6,6) = 1.

Theorem: The numbers par(n,k) are given recursively by these rules:

• par(0,0) = 1

• par(n, 0) = 0 for $n \ge 1$ • par(n, k) = 0 for k > n

• par(n, k) = par(n-1, k-1) + par(n-k, k) for $1 \le k \le n$.

Hour 2

Prove the theorem. Main step (recursive rule): Each partition of n into k parts either has smallest part 1 or has every part ≥ 2 . Partitions of the first kind, $(n_1, n_2, ..., n_{k-1}, 1)$, are in bijection with partitions of n-1 into k-1 parts: $(n_1, n_2, ..., n_{k-1})$. Partitions of the second kind, $(n_1, n_2, ..., n_k)$, are in bijection with partitions of n-k into k parts: $(n_1-1, n_2-1, ..., n_k-1)$ (note that $n_k-1 \ge 1$).

Use the theorem to tabulate par(n,k) and total partitions for $n \le 7$.

Extremely optional: Show that the number of partitions of n with diagonal symmetry is equal to the number of partitions of n whose parts are odd and distinct. (e.g., for n = 16...) Or discuss distinguishable objects in indistinguishable boxes.

Something completely different:

Alternative proof of Fermat's Little Theorem:

Lemma: If p is prime and $1 \le k \le p-1$, then p divides $\binom{p}{k}$. [Demonstrate for p = 7.] —Solicit proof.

Theorem: If p is prime and $a \ge 1$ is an integer, then $a^p \equiv a \pmod{p}$.

Proof: Induction on a. Basis step: $1^p \equiv 1 \pmod{p}$.

Inductive step: If $a^p \equiv a \pmod{p}$, then $(a+1)^p = a^p + \binom{p}{1}a^{p-1} + \binom{p}{2}a^{p-2} + \dots + \binom{p}{p-1}a + 1$ $\equiv a + 0 + 0 + \dots + 0 + 1 \pmod{p}$

not