- 1. Suppose we have an unlimited supply of 4-cent and 15-cent stamps.
 - (a) Prove that we can't make 41 cents postage.

Suppose we can make 41¢ from s 4¢ stamps and t 15¢ stamps. Then 41 = 4s + 15t (where $s, t \in \mathbb{N}$).

If
$$t=0$$
, then $s=\frac{41}{4} \notin \mathbb{N}$, a contradiction.

If
$$t=1$$
, then $s=\frac{26}{4} \notin \mathbb{N}$,

If
$$t=2$$
, then $s=\frac{11}{4} \notin \mathbb{N}$, "

If $t \ge 3$, then $4s+15t \ge 45 > 41$, also a contradiction.

Thus we cannot make 41¢.

(b) Prove that we can make n cents postage for all integers $n \geq 42$.

We argue by strong induction.

We can make n = 42, 43, 44, 45 as follows:

$$42 = 3(4) + 2(15)$$

$$43 = 7(4) + 1(15)$$

$$44 = 11(4) + 0(15)$$

$$45 = 0(4) + 3(15)$$

Suppose we can make n = 42, 43, ..., k-1, where $k \ge 46$. Then, in particular, we can make k-4 cents postage. By adding a 4-cent stamp, we can then make k cents.

We conclude by strong induction that we can make n cents postage for all integers $n \ge 42$.

2. 60% of all e-mail Mira receives is spam. If a message is spam, there's a 3% probability that it contains the word "opportunity". If a message is not spam, there's a 0.5% probability that it contains the word "opportunity".

What is the probability that a message containing the word "opportunity" is spam?

Let E be the event "is spam". Let O be the event "contains "opportunity". Then we are given that p(E) = 0.6, p(O|E) = 0.03, and $p(O|\overline{E}) = 0.005$. The probability we are seeking is p(E|O).

By Bayes' Theorem,

$$p(E|O) = \frac{p(E)p(O|E)}{p(E)p(O|E) + p(E)p(O|E)} = \frac{(0.6)(0.03)}{(0.6)(0.03) + (0.4)(0.005)} = \frac{0.018}{0.018 + 0.002}$$
$$= \boxed{\frac{9}{10}} \quad \text{or} \quad \boxed{0.9} \quad \text{or} \quad \boxed{90\%}$$

- 3. In a standard deck of 52 cards, there are 13 ranks (labeled 2, 3, ..., 10, J, Q, K, A) and 4 suits $(\clubsuit, \diamondsuit, \heartsuit, \spadesuit)$. There is one card of each rank-suit combination (e.g., $Q\heartsuit$ is a card). A hand is a subset of the deck; the order of cards in a hand does not matter.
 - (a) How many 5-card hands are there in which no rank is repeated?

There are $\binom{13}{5}$ ways to choose 5 distinct ranks and 4^5 ways to choose the suit associated with each rank, for

(b) In total, how many 1- to 13-card hands are there in which no rank is repeated? Express your answer in as simple a form as possible.

Method 1

By the reasoning in (a), there are $\binom{13}{k} \cdot 4^k$ k-card hands with no repeated ranks. Summing over all k from 1 to 13 yields $\sum_{k=1}^{13} {13 \choose k}$. 4k hands; by the binomial theorem, this sum equals

Method 2

For each rank, we can choose one of 5 options: include the club, diamond, heart, spade, or no card of that rank. Thus we can form $5 \times 5 \times 5 \times \cdots \times 5$ hands, one of which is the empty hand. The number of 1- to 13-card hands is $5^{13}-1$.

(Continued.)

(c) What is the probability that a random 5-card hand contains at least one heart (\heartsuit) ?

All $\binom{52}{5}$ hands are equally probable; $\binom{39}{5}$ of them have no hearts, so the probability of getting at least one heart is

 $1 - \frac{\binom{39}{5}}{\binom{52}{5}}$

(d) What is the expected number of different suits in a random 5-card hand?

Let $X_1 = \begin{cases} 1 & \text{if we draw at least one } \emptyset \\ 0 & \text{otherwise} \end{cases}$

Let X2, X3, X4 be similarly defined for the other suits.

Then $E(X_1) = 1 - \frac{\binom{39}{5}}{\binom{52}{5}}$ by part (e), and $E(X_2)$, $E(X_3)$, $E(X_4)$

are the same.

If X is the number of different suits drawn, then $X = X_1 + X_2 + X_3 + X_4$.

By linearity of expectation, $E(X) = E(X_1) + E(X_2) + E(X_3) + E(X_4)$

$$= \left[4 \left(1 - \frac{\binom{39}{5}}{\binom{52}{5}} \right) \right].$$

4. Prove the identity
$$k \binom{n}{2} + \binom{k}{2} n^2 = \binom{kn}{2} \dots$$

(a) ... algebraically.

$$k\binom{n}{2} + \binom{k}{2}n^2 = k \cdot \frac{n(n-1)}{2} + \frac{k(k-1)}{2} \cdot n^2$$

$$= \frac{kn\left[n-1+(k-1)\cdot n\right]}{2}$$

$$= \frac{kn\left[n-1+kn-n\right]}{2}$$

$$= \frac{kn(kn-1)}{2}$$

$$= \binom{kn}{2}$$

(b) ... by a combinatorial argument.

Suppose we have kn balls of k colors, with n in each color. Then there are $k\binom{n}{2}$ ways to choose two balls of the same color (because we can choose the color in k ways and the balls of that color in $\binom{n}{2}$ ways).

There are $\binom{k}{2}n^2$ ways to choose two balls of different colors (because we can choose the two colors in $\binom{k}{2}$ ways, the ball of the first color in n ways, and the ball of the second color in n ways).

Two balls are either the same color or different colors, so we have a total of $k\binom{n}{2}+\binom{k}{2}n^2$ ways to choose any two balls—but we also have $\binom{kn}{2}$ ways to do that, by definition. So $k\binom{n}{2}+\binom{k}{2}n^2=\binom{kn}{2}$.

5. For integers $n \ge 1$, let a_n be the number of subsets of $\{1, 2, 3, \ldots, n\}$ that do not contain two consecutive integers. (Include the empty set.)

Determine sufficient initial values and a recurrence relation for the sequence $\{a_n\}_{n=1}^{\infty}$. Justify your answer.

Let us call a subset of $\{1,2,3,...,n\}$ good if it does not contain two consecutive integers.

Then a good subset of $\{1,2,3,...,n\}$ either does or does not contain n. If it does contain n, then it cannot contain n-1; such sets are of the form $A \cup \{n\}$, where A is a good subset of $\{1,2,3,...,n-2\}$. (assuming $n \ge 3$) If it does not contain n, then it is a good subset of $\{1,2,3,...,n-1\}$. There are a_{n-2} good subsets of $\{1,2,3,...,n\}$ that contain n and a_{n-1} good subsets of $\{1,2,3,...,n\}$ that do not contain n. Thus

The recurrence is of order 2, so we need two initial values. The good subsets of $\{1\}$ are \emptyset and $\{1\}$, so $a_1 = 2$.

The good subsets of $\{1,2\}$ are \emptyset , $\{1\}$, and $\{2\}$, so $\alpha_2 = 3$.

 $a_n = a_{n-2} + a_{n-1}$ for $n \ge 3$.

Remark: a_n is the (n+2)th Fibonacci number, but stating this was not required.

Rubric

#1 10 pts, each part.

On (a): 9 pts. for exhaustion/cases with no justification for ≤2 15¢ stamps. 7 pts. for exhaustion/cases with missing cases. ≤5 pts. for unsupported claim of exhaustion.

On (b): Valid strong induction, weak induction, and non-inductive proofs were seen. 5 to 8 pts. for hand-wavey style or inappropriate presentation

(e.g. undefined "P(n)", misstated inductive hypothesis, misuse of variables)

5 pts. for strong induction with only one base case (if not sufficient)

5 pts. for "turn 15¢ into 4×4¢" arguments that ignore possibility of no 15¢ stamps 2 pts. for just base case(s)

#2 20 pts.
17 pts. for correct setup w/ arithmetic error or misplaced decimal point
10 pts. for correct setup w/ some probabilities wrong (other than misplaced decimal)
≤5 pts. for incorrect setup of Bayes or for finding wrong probability, e.g. p (spam ∧ "opp.")

#3 5 pts. each part; generous PC as follows:

(a) 3 pts. for counting ordered hands, i.e. $P(13.5).4^5$ 2 pts. for choosing only one suit, i.e. $4.(\frac{13}{5})$ No credit for both mistakes

(b) 4 pts. for $4^k \binom{13}{k}$ or $\sum_{k=1}^{13} 4^k \binom{13}{k}$ (unsimplified) 4 pts. for 5^{13} (includes empty hand) 3/2 pts. for mistakes analogous to those in (a)

- (c) 2 pts, for treating cards as independent/drawn with replacement, i.e. $1-\left(\frac{3}{4}\right)^5$ 2 pts. for $\frac{\binom{13}{1}\binom{51}{4}}{\binom{52}{5}}$ (some hands are overcounted)
- (d) 5 pts. for correct answer even if done the long, painful way (i.e. p(X=1)+2p(X=2)+3p(X=3)+4p(X=4)) 4 pts. for long, painful answer with a mistake in one case 2 pts. for E(X)=p(X=1)+2p(X=2)+3p(X=3)+4p(X=4) with poor attempt to compute probabilities No credit for claiming # of suits is geometrically distributed or for $E(X)=\hat{5}\cdot\frac{1}{4}$

#4 10 pts. each part.
On (a): 9 pts. if steps are logically reversed.
On (b): Range of scores for proofs lacking clarity/detail.

#5 20 pts.

17 pts. for listing 1- and 2-element sets but not stating $a_1=2$, $a_2=3$.

15 pts. for correct result with poor justification.

10 pts. for Correct result with no justification other than apparent pattern for small n.

≤5 pts. for serious misunderstanding of problem.